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TECHNICAL NOTE 3528

A THEORETICAL STUDY OF THE AERODYNAMICS OF SLENDER
CRUCIFORM-WING ARRANGEMENTS AND THEIR WAKES

By John R. Spreiter and Alvin H. Sacks
SUMMARY

A theoretical study is made of some cruciform-wing arrangements and
their wakes by means of slender-body theory. The basic ideas of this
theory are reviewed and equations are developed for the pressures, load-
ings, and forces on slender cruciform wings and wing-body combinations.
The rolling-up of the vortex sheet behind a slender cruciform wing is
considered at length and a numerical analysis is carried out using
40 vortices to calculate the wake shape at various distances behind an
equal-span cruciform wing at 45° bank. Analytical expressions are
developed for the corresponding positions of the rolled-up vortex sheets
using a 4-vortex approximation to the weke, and these positions are com-
pared with the positions of the centroids of vorticity resulting from
the numerical analysis. The agreement is found to be remarkably good
at all distances behind the wing.

Photographs of the wake as observed in a water tank are presented
for various distences behind & cruciform wing at 0° and 45° bank. For
h5o bank, the distance behind the wing at which the upper two vortices
pass between the lower two is measured experimentally and is found to
agree well with the 4-vortex analysis.

The calculation of loads on cruciform tails is considered in some
detail by the method of reverse flow, and equations are developed for the
tail loads in terms of the vortex positions calculated in the earlier
analyses.

INTRODUCTION

The importance of the rolling-up of the vortex sheet in determining
the downwash behind slender wings is now generally recognized and has
been discussed at some length in reference 1. The current use of crueci-
form wings has caused the missile designer further concern regarding the
dovnwash field in the vicinity of the tail. Such calculations are gen-
erally considerably more complicated than those for planar wings. However,
since the wings on missiles of this type are generally of low aspect ratio
and the tail lengths are long, it is often assumed that the vortex sheet
shed from each panel of a cruciform wing is completely rolled up into a
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single vortex line at the tail position. One of the purposes of this
paper is to investigate the usefulness of such an approximation at various
distances behind the wing. This will be accomplished by comparing the
results of an analytic study of the behavior of a Y-vortex model with the
results of & numerical camputation for a corresponding 4o-vortex system
and with observations of experiments conducted in a water tank.

The calculation of the pressures, loadings, and forces on -cruciform
wing-body combinations without regard to the wake will be treated early
in the analysis, and a later section will be devoted to the calculation
of the loads on a cruciform tail in the presence of the vortex wake.

PRINCIPAL SYMBOLS

A aspect ratio
a body radius
b span of equal-span cruciform, 2sg
. L
C ———
L qSH
cr” L’
-— PO

CP pressure coefficient, q
oy Y

qSV

Yl
Cvy' _
Y Sy
c wing chord
a distance behind wing trailing edge
ar, distance behind trailing edge of cruciform wing (@ = 45°)

at which upper two vortices pass between lower two
dg distance behind trailing edge at which vortices are essentially
rolled up

E elliptic integral of the second kind
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SH

Sy

u,v,w

X,¥,2

incomplete elliptic integral of the first kind

lateral distance between centroids of vgrticity of the two
halves of the vortex weke for @ =145 (f =y,' + y=")

difference between @ and @,

complete elliptic integral of the first kind
force component in the 2z direction

force component in the z' direction

length of the airplane

free-stream Mach number

outward normsl from surﬁace of airplane or wake
static pressure

free-stream static pressure
p OUO

free-stream dynamic pressure, 5

Ny2 + z2

cross-sectional area

plan form area of wing H

plan form area of wing V

local semispan of component wing H

maximm value of s

local semispan of component wing V

maximm value of +

free~stream speed

fluid velocity components in the x,y,z Airections

Cartesian coordinates fixed in the body and illustrated in
sketch (a)
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X,y',z! Cartesian coordinates obtained by rotating the xyz system
en engle @ about the x axis as illustrated in sketch (f)

1 z, 1

gl,’zl,’}-y’ and z' coordinates of vortices 1 and 2 of Y-vortex snalysis

2 sé2

Y force component in the y direction

Y! force component in the y' direction

Ve sZe ¥y and z coordinates of centroid of vorticity

o angle of attack in the xyz coordinate system as illustrated
in sketch (a) :

o’ angle of attack in the xy'z' coordinate system as illustrated
in sketch (f)

B angle of sideslip in the xyz coordinate system as illustrated
in sketch (a) '

1N maximum circulation round a wing penel

2] angle from the positive y axis to a point on the airplane
surface, positive counterclockwise, as illustrated in
sketch (c)

A curve describing the cross section of the vortex wake in planes
x = const.

Py fluid mass density

a curve bounding the cross section of the airplane or wake in
planes x = const. as 1llustrated in sketch (b)

L] total velocity potential

@ angle of bank illustrated in sketch (f)

P perturbation velocity potential satisfying Prandtl-Glauert
equation

P, perturbation velocity potential satisfying two-dimensional

Laplace equation in planes x = const.
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Subscripts
H component wing lying in the xy plane
TE wing trailing edge
u,l two sides of the wake
A component wing lying in the xz plane

FUNDAMENTAT, RELATTIONS

The theory for inviscid compressible flow about slender bodies of
arbitrary cross section has become well formulated in recent years and
is now described in detail in many papers (see ref. 2 or 3 for a resume)
These methods can be applied to the study of flow about cruciform wings
and wing-body combinations and will be used throughout the present
analysis.

The Coordinate System

Most of the analysis will be
referred to a Cartesian coordinate
system fixed in the body, as shown in P
sketch (a). The free-stream direc- «
tion may be inclined, small angles

o and B with the x axis, as pro- ‘b
jected onto the xz and xy planes, ‘ 0.
respectively. “x

z y
! ]
; a i i
The Potential [ — XU.,J\}‘: —] x
Tsund !!lll Y "!lll

A perturbation velocity potential
¢ is introduced related to the total - Sketch (a)
velocity potential ¢ according to

O =Up(x - By +az) + @ (1)
and it is assumed that the perturbation velocities are sufficiently small

that the equations for compressible flow can be satisfactorily approxi-
mated by the Prandtl-Glauvert equation. Thus @ 1is a solution of

(1 - M®) Py + Pyy + Py = O (2)
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If it is assumed, furthermore, that the airplane is sufficiently slender
that the longitudinal perturbation velocities and their gradients are
small compared with the lateral perbturbation velocities and their gradi-
ents, Ward (ref. 4) has shown that the equation for the perturbation
velocity potential @ in the vicinity of the airplane is

X
Uy d dS. . 2(x - &)

CP:CPZ - <

- at
x 3x, AE MoZ - 1 (3)

for supersonic flow (M, > 1); and Heaslet and Lomax (ref. 5) have shown
that

1
Uo o dSc x-§ 2lx - &
=9, -~ — —-\/n in dg (4)
byt 9x /. at |x- &] J1 - M2

for subsonic flow (My < 1). In these equations, 1 represents the length
of the airplsne and S, = Sc(x) represents cross-sectional area in planes
normal to the x axis. The symbol ¢, in these equations represents
the solution of the two-dimensionsal Laplace equation

q)y-y' + q)zz =0 . (5)

for the specified boundary conditions, and can be written explicitly as

1 d
¢2=§[ .a.;%-q>§5>znrac (6)

where o is the line bounding the cross-sectional area of the airplane
and its wake in the yz plane, and n is the surface normal in the yz
plene, as indicated in sketch (b). Thus, the three-dimensional velocity
field induced by slender airplanes flying at
z either subsonic or supersonic speeds is approxi-
mated in the vicinity of the airplane and the
wake by a velocity field that satisfies the two-
__________ dimensional Iaplace equation and the boundary
y conditions in transverse planes plus a longitu-
dinal velocity field that depends on the longi-
Sketch (b) tudinal rate of change of cross-sectionsl area
and is independent of y and z. Consequently, equations (3) and (4) are
often written in the following more abbreviated form

P =@y + g(x) (7)
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which is a general solution of equation (5), but where knowledge of
equation (2) must be introduced to permit the determinstion of g(x).

As is apparent from comparison of equation (7) and equations (3) and (L),
the function, g(x) contains all of the dependence on Mach number, but

the only feature of the airplane geometry which enters is the cross-
sectional area. Thus, as shown by Keune (ref. 6) and Heaslet and Lomax
(ref. T7), g(x) for slender airplene can be thought of as the limit
for small r = Ny2 + z2 of the difference between ¢ and @, for a body
of revolution having the same S,(x) as the airplane, that is,

1
g(x) = 1im |- 32 [ e ag Jo'%e 3 2| (8)
r—>o| MMy, N(x-8)2 + (1-Mp3)r2 e dx

for My <1l and

X-QEE?-lr.

g(x) = 1im |- EEL/1 dSe _ ag Uo d5¢
r—>0 o at J(x-£)% - (M2-1)r2 2 &

(9)

for Mg >1. It is indicated in references 8 and 9 that a corresponding
relationship occurs for My, = 1 in transonic theory, although there is
at present no explicit formula for computing- @ <for a body of revolution
in transonic flow.

Once @ 1is determined, the pressure can be calculated directly using
the relationship

Cp = - ﬁ%(cpx + P, - BPy) - [—Iig(wye + 9,2) (10)

The Boundary Conditions

The boundary conditions require that the gradient of the total veloc-
ity potential @& is consistent with the free-stream conditions at infin-
ity, and is zero when evaluated normal to and on the surface of the air-

plane. Consequently, @ 1is a constant, say zero, infinitely far shead of
and to the side of the airplane and

57 =Uo(ny - Py + ang) + 139 + 00y + ngfy = O (11)
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on the surface of the airplane. In equation (ll), n' represents the
normal to the surface, and nj,n,, and ng represent the direction cosines
of n' with respect to the " x, y, and z saxes, respectively. By the
assumptions basic to slender-airplene theory, this equation<reduces to

d
Uy(n, - B, + ang) + %% =0 (12)

vhere 3/dn = ny(3/dy) + ng(d/dz) and is the surface normal in a ¥z
plane. Having equation (12) expressing the boundary conditions at the
surface of an arbitrary slender airplane, one cen easily write the corre-
sponding relations for specific shapes. For example, the boundary con-
dition for a body of revolution is

égé> = Uo(%%" a sin 6 + B cos é) (13)

or /r=a

where r = a(x) is the body radius
and 6 is measured in the counter-
clockwise direction from the positive
y axis, as shown in sketch (c). The

e Y o ' |

'<; boundary condition for a thin wing
8 situated near the xy plane, as shown
s in sketch (d), is
. -_L _________ y ( )J
—:2) = - Uya + Uy -aaﬁ— (14)
Sketch (c) 2 /o0 X
z
: .y : z
T | where hy = hg(x,y) is the 2z ordi-
v i nate of the wing surface. If the

wing is situated near the xz plane,
as shown in sketch (e), the boundary
condition is

0] ’ Bhy
@5_;):0 BT L (1)

1

4
1
E

—-’/“— Ly’ hy(x, z)

where hy = hy(x,z) now represents
the y ordinate of the wing surface.

Sketch (e)
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The above statements (and similar ones for other configurations)
permit the determination of @ <for all points in the vicinity of slender
nonlifting eirplanes, but only for points forward of all trailing edges
for 1ifting airplanes. The insufficiency in the latter instance stems
from the fact that the line integral in the definition of ¢, must be
carried around the trailing vortex wake and that additional relations are
necessary to determine the location of the wake and the conditions existing
thereon.

The vortex wake is idealized in wing theory to an infinitely thin
vortex sheet extending downstream from the trailing edge of the wing.
The vortex sheet can be thought of as being composed of vortex lines hav-
ing constant circulation I', or strength, along their length. The funda-
mental properties are that the velocity must be purely tangential on
either side of the wake, and that the pressures are equal on opposite
sides of the wake. The first of these properties corresponds to the
statement that 0¢/on' is zero on both sides of the wake, and leads, in
the present approximation, to equation (12). Since the direction cosines
ni,no, and ng of the normal to the wake are equal and opposite on the
two sides of the wake, one concludes that 0¢@,/0n is equal and opposite
on the two sides of the weke. These two properties, when combined with
the pressure-velocity relation of equation (10), lead to the conclusion
that the vortex lines are parallel to the average of the velocity vectors
on opposite sides of the wake, again evaluated to an order consistent
with the remainder of the analysis. In other words, I' or AQ is constant
along lines extending downstream from the trailing edge according to the
relation

i = i X (16)
Pty i Pzy ¥ P2y o
UpB + —5— Uga + ——m——

where the subscripts u and 1 refer to the values on opposite sides of

the wake. It is interesting to note in closing this discussion that the
inclusion of nonlinear terms in the pressure-velocity relation of slender-
wing theory requires consideration of the deformation and rolling-up of

the vortex wake, and that the flat wake commonly assumed in linear theory
is' inconsistent with the use of equation (10) for the pressure. Additional
discussion of these points can be found in reference 3.

A Second Coordinate System

In order to take advantage of certain symmetry properties, part of
the results will be given in terms of a second coordinate system xy'z’'.
This coordinate system is related to the xyz system by such a rotation
about the x axis that the xz' plane contains both the x axis and
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the free-stream direction. With this system, the airplane is banked an

angle ¢ with respect to the '

\
<
-

¢
;ﬁi}

. v
%;.i::::§§§§3"x Us szzzigé%}«
U,

Sketch (f)

NACA TN 3528

exis, and the free-stream direction
mekes an angle o' with the x axis
as shown in sketch (f). Since o and B
are small angles, we have the following
relations:

(a7

This coordinate system will be used
from time to time during the discussion
and for the presentation of the specific
results for @ = 45°.

FORCES ON SLENDER CRUCIFORM WINGS “

The relationships outlined in the preceding section apply to slender

bodies of arbitrary cross section.

z
]
i Ly
1
1 -
1
:

H
Vv \\\“\\\
X
Sketch (g)
O
; - )
C)\$\ Oy =G )}{() y + :#: y
) H

? = Pq * @b

Inasmuch as the vortex calculations,
which are the principal subject of this
study, are confined to cases involving

* either plane or cruciform arrangements

of thin wings, attention will be
devoted in this section to the deter-
mination of the aserodynamic forces on
flat-plate wings of zero thickness.
(The corresponding results for slender
wing-body combinations are included in
the appendix.) These results supersede
those of reference 10 in which proper
account 1s not teken of the nonlinear
terms in the pressure coefficilent.
Thus, consider the cruciform wing
illustrated in sketch (g) and designate
the component wing which extends along
the y axis as H and that which
extends along the =z axis as V. Both
components are symmetrical about the

X axis, the plan form of wing H
being given by ¥y = +s8(x) and that of
wing V by z = +t(x). Since the

wings have no thickness, g(x) = 0, the
flow is unaffected by Mach number, and
@ = 5. The solution for this case

can be considered to be the sum of the
solutions for the flows about each “
component alone as shovn in sketch (h),
since wing H lies in a plane of
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symmetry of the perturbation flow

in a plane of symmetry of the perturbation flow ¢, eabout wing H.
can be found in many sources

expression for @

11

about wing V, and wing V lies
The
(e.g., ref. 11) and is

U
cpa=i%JS2 - ¥y2 + 22 + J(sz—y2+22)2+1+y2z2-an,z

(18)

where the sign is positive in the upper half-plane and negative in the

lower half-plane.

The expression for P, 1is

q}b=

i%»ft2+y2-‘z2+~/(t2+y2—

22)° 4+ b2 +U gy (19)

vhere the sign is positive in the left half-plane and negative in the

right half-plane.
the cruciform wing is thus

¢

= Qg + P

The perturbation velocity potential for the flow about

(20)

Through application of equations (10) and (18) through (20), expres-
sions for the differential pressures or loadings on the two component

wings are found to be

(APL> bo asfax | bap y/s 1 )
N1 - y3/s2 N y2/s2 1 + t2/y2
' f (21)
( _ he dt/d.x . hag 2/t 1
- 22[t2 N1 - 22/42 J1 + s2/22 |

The sign convention is such that the loadings are positive when they are
associated with forces in the direction of the positive y and z axes,
and hence with positive 1ift and side force as indicated by the sub-

scripts on the symbol Ap.

Of the two terms in the loading expressions, the symmetric first
terms contribute to 1lift end side force and the antisymmetric second
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terms contribute to rolling moment. To illustrate this point further,
sketch (i) shows the load distribution on a cruciform wing having trian-
gular components. The loading on the vertical component is shown by the
two top sketches, and that on the
horizontal component is shown by the
lower sketches. The skebches on the
left represent the contribution of
the symmetric first terms of equa-
tion (21); those on the right, the
contribution of the antisymmetric
second terms. As has been pointed
out in many discussions of slender-
wing theory, equation (21) for the
loading applies only to those por-
tions of wings for which ds/dx and
dt/dx are positive. Conseguently,
the present analysis will be confined
to wings having their meximum span
at the trailing edge. The permissible ranges for o« and B are also
restricted inasmuch as equation (21) becomes invelid when either the angle
of pitch or yaw becomes so large that the leading edge rotates beyond the
free-stream direction and becomes, effectively, a trailing edge. Mathe-
matically, this limit occurs when |B|=ds/dx and when |a|= dt/dx. If it
is desired to investigate wings inclined at large angles, consideration
must be given to the influence of the trailing vortices lying outboard of
the sides of the wing. ’

Sketch (i)

The total forces on the cruciform wing can be determined by inte-
grating the loading over the entire surface area. Thus, the 1lift (i.e.,
the total force in the direction of the positive =z axis) is given by

L =ff Apr, dx dy = 2mqasg” (22)
H

where so is the maximum semispan of wing H. Likewise, the total side
Porce in the direction of the positive y axis is

Y =ff Opy dx Az = -2nqBto? (23)
v o -

where +to is the maximm semispan of wing V. The same results,
expressed in coefficient form, are

Lz
CL'qu 5 A (24)
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Cy = X -

I 2
3 % Ayp (25)
It may be noted that these latter integrated results can be obtained
more easily by momentum methods (e.g., refs. 2 and 3) if details of the
loadings are not required. For example, the 1ift of any plane or cruci-
form wing is glven simply by

+5¢p

Leodlo [ b (26)

—SO

vhere AqﬁE refers to the difference in the values of the perturbation
potential @ on the two sides of the wing, evaluated at the trailing
edge.

WAKE AND DOWNWASH

The determination of the shape of the trailing vortex sheet and the
associated velocity field behind a wing customarily involves considera-
tions of classical vortex laws together with the known vorticity distri-
bution at the trailing edge. For slender wings, these relations are all
imbedded in the equations given in the first section of the present
analysis. Thus, since Sc = O behind the wing and BQ/Bn is equal and
opposite on the two sides of the vortex wake, it follows from equa-
tions (3), (4), and (6) that the perturbation potential for the flow in
any lateral plane behind the wing is given by

cp=q32=_.2Lﬂ .qJ—a%-andcr (21)
(]

A direct consequence of the zero thickness of the vortex wake is that the
normel derivative in equation (27) is equal and opposite on the two sides
of the wake. This means that the contour integrel around the wake indi-
cated by o 1in equation (27) can be replaced with a line integral along
only one side A of the vortex sheet. The integrand then involves not
@, but the difference in potential AP on the two sides of the wake.

Since, furthermore
A(p =T . (28)
and

Z—Zl
tan
oA Y-V

(29)
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equation (27) becomes, on performing an integration by parts

L 9 yn-1 221 ___l_far -1 2-21
P Qﬁh/;I‘akta.n y_yld}\— 5 ﬁtan y_yldj\ (30)
A

gince TI' 1is zero at the lateral extremities of the vortex sheet. The
corresponding relations for the velocity components v and w 1in the
direction of the positive y and z axes can be found by using equa-
tion (30) in conjunction with equation (1), thus

o or zZ - Z3
V= — = -UOB + (Py— = - U,B + d?\ (31)
oy ° 37‘ (y-y1)% + (z-21)°
W=@-—UQ,+CPZ— Ocz,--L- S_I' yz—yl 2d7\ (32)
oz e O (yoy1)® + (z-zy)

The relation for the path of each vortex line given by equation (16)
can be expressed in terms of v and w, thus

- (33)

d-y- —3 dZ =
<Vu + vy Wy + Wy Uo
2 2

where the subscripts u and 1 again refer to the velues on the two sides
of the vortex wake.

The principal difficulty in the calculation of v and w stems from
the fact that the shape A and the vorticity distribution or /57\ of the
weke are not immediately known at all stations behind the wing, but only
at the trailing edge. At this station, the circulation distribution can
be determined directly from equations (18) through (20) by setting z = O
for the vortex sheet behind wing H and y = 0 for that behind wing V
and replacing s and t with sg and tg (the meximum values for s and t,
occurring at the trailing edge). The resulting expressions

Tg = AP = 20 N802 - ¥2 (3%)
Ty = APy = 2UpBAto2 - 22 (35)
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indicate that the circulation distribution is elliptic immediately behind
each wing. This case illustrates the fact that the circulation distribu-
tion and span loading are not always proportionsl. This conclusion is
immediately apparent when it is observed that the circulation distribution
for the present case is symmetric about the x axis, whereas the span.
loading is asymmetric, as can be seen by examining sketch (i). If atten-
tion is confined to stations immediately behind the trailing edge and to
cases vhere the wing is at very low lift, so that x - xmg and I' are
small, it may be assumed for certain purposes that the distortion and

. rolling-up of the wake is so slight that they can be disregarded. With

this assumption, the induced flow field behind a lifting wing can be com-
puted directly. Thus, the perturbation potential for the flow behind the
triangular cruciform wing treated in the preceding secticn can be obtained
from equations (18) through (20) by again substituting sg for s and

to for t, and the associated velocity field can be found therefrom by dif-
ferentiation. Although the error incurred in the induced velocities by
the use of this assumption can be continually diminished as the 1lift and
distance from the wing is reduced, the condition of zero force on the

wake is always violated at the edges of the wake. The eliminstion of
these forces demands that the vortices be free to roll up. Inasmuch as
these effects became of increasing importance as the aspect ratio is
decreased, attention here will be focused more on determining the behavior
of the trailing vortex system than on performing calculations assuming a
simplified wake form.

Similarity Considerations

The rate at which distortion of the weke progresses with increasing
distance from the wing will first be investigated by means of similarity
considerations. Consider two geometrically similar cruciform wings
traveling at either subsonic or supersonic speeds, but differing in span
and angles of pitch and yaw. It is desired to relate the distances behind
the two wings at which the wake patterns are similar. Iet the symbols
referring to the reference wing be denoted by asterisks and those refer-
ring to the second wing be plain. Inasmuch as a first requirement is that
the vorticity distributions must be similar at the trailing edge, it is
necessary that the ratio of angle of attack to angle of sideslip a/B be
the same for both wings. (If the problem is stated in the alternative
manner by specifying the angle of attack ' and angle of bank ¢, this
condition corresponds to requiring that both wings have the same angle
of benk.) From equations (31) and (32), it is evident that the perturba-
tion velocity components and ¢, behind the wing are directly propor-
tional to the circulation and inversely proportional to the scale. TInas-
much as the former is measured by, say, the maximum value of the circula-
tion Tg, and the latter by the semispan s, the ratio of the lateral
induced velocities at corresponding stations behind the wings is equal to
the ratio of the circulation loading of the two wings.
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pr q)z T /S
P rog/sZ*' (36)

Since the ratio of the longitudinal distances, in terms of wing
semispans, from the trailing edge to stations having similar wake patterns
is inversely proportional to the ratio of the induced velocities, in terms
of the free-stream velocity, we have

a/so B Uy /Py _ Uosolo
a* /s ¥ Uo*/Qy* Uso*To

(37)

This relation reduces to the following when the circulation function TI'y
is replaced by the 1lift L +through the introduction of equation (26)

2 2%
dfsq  PUg 8o L (38)
= -
a* /s * po*Uo* so* L

or in dimensionless form

ifsq__ Ao, (39)

d*/so* A*/CL*

where A refers to the aspect ratio and Cp to the lift coefficient.
In many cases, it is preferred to express the distance d 1in terms of
the wing chord rather than the semispan, whence

d/c _ A/C‘]:. SO/C
a* Jc* B A¥[or* s ¥[c*

(ko)

From this result, it can be concluded that the expression for the distance
required for the trailing vortex sheets to assume any particular configu-
ration is of the form

NS
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vhere k is, as yet, an unspecified constant. This formula is directly
applicable to both the rolling-up of the vortex sheets and the relative
motions of the rolled-up vortices. Thus, for instance, one set of values
for k will give the distance required for the vortex sheets to become
rolled up to any given degree as a function of the angle of bank ¢;
whereas another set of values will give the distance for the rolled-up
vortices to assume some particular orientation with respect to one another.

The foregoing analysis glves no information regarding the relative
rates of rolling-up of the individual vortex sheets itrailing from each
panel of a cruciform wing. If the angle of sideslip B is zero and the
angle of attack is different from zero (or the angle of bank ¢ is zero),
8 vortex sheet exists at the trailing edge of only the horizontal wing
and it rolls up in exactly the same manner as it does behind a single
plane wing. If, on the other hand, the angles of attack and sideslip are
equal (or the angle of bank is 45°) and the cruciform wing is composed of
four identical panels, the vorticity distribution at the trailing edge of
each panel is the same and the wake rolls up into four equal vortices at
nearly equal rates. Other cases are more complicated.

Attention has been called in reference 1 and elsewhere to the value
of k = 0.28 given by Kaden in reference 12 for the constant in equa-
tion (hl) for the distance required for the vortex sheet trailing from a
plane wing having elliptic circulation distribution to become "essentially
rolled up." Although the accuracy, as well as the precise meaning of
Kaden's result is impaired by the numerous and somewhat arbitrary assump-
tions introduced in the course of the analysis, the result is useful for
predicting the order of magnitude of the distence involved. The problem
actually attacked by Kaden is that of the rolling up of a vortex sheet
of semi-infinite width, having parabolic circulation distribution. The
result is epplied to the case of a vortex sheet of finite width having
elliptic circulation distribution by selecting the strength of the para-
bolic distribution to match the known elliptic distribution at the wing
tip, and assuming that the rolling up of the finite vortex sheet and the
semi-infinite sheet proceed identically.

If the same ideas together with Kaden's result for the plane wing

are applied to the cruciform wing, the distance from the trailing edge
to the station where the vortices are essentially rolled up is

d‘R A 2s
RYy - 2 20
C>H = 0.28 o e (42)

for the horizontal wing and

R
c

V'

|
o
[
63
|

2t
Cy ¢ (43)

for the vertical wing.
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Numerical Results (20 snd 40 Vortices)

A detailed analysis of the form of the vortex system behind lifting
wings can be made on the basis of equations (31) through (33) by replacing
the continuous sheet of vortices with a finite number of discrete vortices
and determining their positions at each longitudinael station by a step-by-
step calculation procedure. Such a calculation was carried out long ago
by Westwater (ref. 13) for the plane wing with elliptic circulation dis-
tribution. In this particular treatment, the vortex sheet was replaced
by 20 vortices of equal strength and the results were presented by giving,
both numerically and graphically, the positions of each of the vortices
at several different distances behind the wing. These results, which of
course apply equally to cruciform wings at zero sideslip, are summarized
in graphical form in sketch (j). Although these results are presented
here in terms of body axes, rather than wind axes as previously given in

495 —_—

/

X

Sketch (j)

reference 1, additionsl reference lines are included which extend down-
stream from the trailing edge in the free-stream direction. This sketch
clearly illustrates how the center of the vortex sheet behind low-aspect-
ratio wings extends downstream in nearly the direction of the extended
chord plane, while the vortex cores extend dowvnstreem in nearly the
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direction of the free stream. Similar calculations have been made
recently for wing-body combinations and are reported in reference- 14
by Rogers.

A numerical calculation® has been carried out for the case of a
cruciform wing having four identical psnels at equal angles of attack
and sideslip (@ = 45°). In this calculation, the.vortex sheet trailing
from each of the four panels is replaced by 10 discrete vortices of equal
strength distributed in such a fashion that the area under each step of
the approximaste circuletion distribution is equal to that under the corre-
sponding portion of the elliptic curve representing the given circulation
distribution. With the strengths and positions of the vortices thus
determined, the velocity components at the position of each vortex are
computed using equations (31) and (32) and the change in the position of
the vortices with a small increase of the distance from the wing is deter-
mined using equation (33). This process is then repeated using the new
vortex positions. Since the entire trailing vortex system is symmetrical
about a line inclined at 45° to the xyz coordinate system, the results
are expressed in terms of the xy'z' coordinate system described earlier
with the angle of bank ¢ set equal to 45°. With the positions of the
vortices given in this system, it is necessary to specify the coordinates
of only half the vortices, since the strengths and locations of the
remainder are just those of mirror images about ¥' = 0; that is, with
the vortices numbered from 1 through 40 as indicated in sketch (k),
vortex 20+1 is the image of vortex i and the following relations hold
between the two vortices

z2'o04i = 24 5 Yoo = = ¥i's Poopg = Ty (k)

Since the force component in the
direction of the y' axis, or the
side force Y', vanishes with this
choice of coordinate system, the 30
force component in the direction of
the z' axis, or the lift L', is
equal to the resultant lateral force,

___...--__......__..-...-.._h!

thus N y
L' = 12 + Y2 = V2L (45)
or, in coefficient form 40 20
oLt = é%é - Joo (46) Sketch . (k)

The actual computations were done under the supervision of
Mr. Stewart M. Crandall 'of the Electronic Machine Computing Branch of the
Ames Aeronautical Leboratory.
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Since it follows, furthermore, from equation (17) that

o =Na® ¥ BB =N (¥7)
we have
oy = § At = E Al Or' = (48)

for cruciform wings of equal span.

The results of the calculetions are given in three forms. A highly
abridged illustration of the results is given in sketch (1), a

z (w(:\

f:‘_\* (\ /
\\
4 &
(\+— \§ j_ aoo 4% .
l b 52 v
//z—f—* a7
10
<430
‘\_
/ 570

Sketch (1)
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complete series of illustrations is provided in figure 1, and a complete
listing of the numerical results is given in table I. In order to facili-
tate the fairing near the plane of symmetry of the curves representing

the vortex wake, the position of the point lying in the plane of symmetry
was calculated at each downstream station. In keeping with the remainder
of the present analysis, the above results are given in terms of body axes.
Additional reference marks are shown on the graphical presentations, how-
ever, to indicate the position of a line in the free-stream direction
passing through the trailing edge of the wing root. In sketch (1), this
line is shown as a solid line lighter in weight than the axes. In fig-
ure 1, its position is indicated by a small circle on the 2z' axis. As
can be seen from examination of the results, these calculations were
carried forth for distances behind the wing up to approximately an

(Afcr,") (b/e) of unity. The rolling up of the vortex sheets is clearly
evident and has progressed to a substantial extent at the most rearward
station. Attention is called to the fact that this distance is much
greater than that indicated by Kaden's formulas for the distance to roll
up and that the rolling up of the vortex sheets proceeds at a much slower
rate than indicated by these relations. The same conclusions follow from
an examination of the planar case.

A second prominent feature of the vortex wake of cruciform wings at
450 bank concerns the tendency of the vortices from the upper wing panels
to incline downward toward those from the lower wing panels, and eventu-
ally to pass between them. Although the present calculations were not
carried on to sufficiently large distances from the wing to display this
Phenomenon fully, the results do confirm the conclusions of reference 15
that this "leapfrog" distance is much greater than the distance indicated
by Kaden's formuls for rolling up of the vortex sheets. An important
consequence of the difference in rates is that the full details of the
rolling up need not be considered in the analysis of the slower leapfrog
phenomenon. Thus, if the properties of a continuous vortex system are
to be ascertained by considering the properties of a system comprised of
a finite number of discrete vortices, a great many vortices are necessary
to trace the course of the rolling up, whereas a satisfactory model for
studying the leapfrog characteristics may often be had by using only one
vortex per wing panel.

Analytical Results (4 Vortices)

It is apparent from the preceding discussion that a very large
number of discrete vortices must be included to give an adequate repre-
sentation of the vortex system near the wing. At greater distances from
the wing where the vortex sheets are substantially rolled up, it appears
plausible that the analysis can be simplified, while still retaining the
essential features, by assuming that the vortex sheets are fully rolled
up into four vortex lines (one from each wing panel). This simplification
is analogous to the use of a vortex pair for calculating the induced flow
field at great distances behind a lifting planar wing.
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In contrast to the case of the plane wing for which the vortex sheet
rolls up into two vortex lines that, at great distance behind the wing,
are simply straight lines inclined at a small angle from the free-stream
direction, the amaslogous problem for cruciform wings is necessarily more
complicated. Instead of two rolied-up vortices, there are now four and
their induced effects upon one another are such that the curves described
by the vortex lines are quite intricate. The simplification introduced
by diminishing the number of vortices from 40, say, to 4, however, is
particularly important since it permits the use of analytical methods
instead of the numerical procedures described in the preceding sections.

The first step In the development of this analysis is to select the
strengths and locations of the four vortices used to represent the actual
vortex sheet at the wing trailing edge. Since it is assumed that all of
the vorticity from each wing panel rolls up into e single vortex, it
appears natural to consider that each vortex is of strength equal to the
circulation around the corresponding wing panel and is situated laterally,
at the trailing-edge station, at the position of the centroid of vorticity
of the vortex sheet it replaces. It is further assumed that the strength
of each vortex is constant along its length, but that its lateral position
changes with x 1n accordance with the velocities induced by the other
three vortices. Although coincidence of the lateral position of each of
the four discrete vortices of the simplified model and the centroid of
vorticity of each of the actual vortex sheets is assured at only the
trailing edge of the wing, it is tacitly assumed that the .two sets of
locations are sufficiently near to be interchangeable for most practicel
purposes. The accuracy of this assumption, which has already been demon-
strated for planar wings in refer-
ence 1, will be discussed at the end
of the present section.

z!

36 ok Determination of vortex paths for
45° penk.- In reference 15 an analysis
was carried out in which equations were
developed for the paths of four recti-

y’ linear vortices which start in a sym-
metrical arrangement as shown in

O Do-  sketch (m).2 In that peper, the analysis

was applied to the calculation of the

paths of four vortices representing the
wake behind an equal-span cruciform wing
at 45° bank. It is necessary to rein-
vestigate this application, however,
because the vortex positions at the

of trailing edge were calculated from the
symmetry span loading, since it was not recog-

nized that the circulation distribution
Sketech (m) -

2The motions of 2n vortices were treated by Grobli (Vierteljahr-
schrift der naturforschenden Gesellschaft in Zurich, vol. 22 (1877),
37-81, 129-167). However, his result for the case of interest here is
incorrect.

plane




4R

NACA TN 3528 ' 23

and span loading were different. The present analysis supersedes the
bart of reference 15 dealing with the application to the cruciform wing.
The results will be given here in terms of the body axes xy'z' defined
earlier. From the analysis of reference 15 it is found that if the L
vortices are of equal strength, the projection of the path of vortex 1
on the y'z' plane is given by (if G < k)

z ! @GR 8in @,cos @ sin @.cos @
; = 6)+G =} [E(k:cpo) 'E(k:q’l):l + = - - 2
16-G 8(+-0) \JT- x2oinPe, 1-KEsizy,
' H
1 gin @ sin @ Y. +a'd
ge(@ + 4) 12 - 2 FR I (49)
where
=y +y5' G = : L -2
Yo (1 %
i T T
Yo' = value of y,' at k = %- d = distance behind
wing trailing edge wing trailing edge
. > >
£ g
R2- (3/'0l - §> R2- <Y1' - 'é') . £2q
sin®Q, = sin?Q, = R = —————
Po S P2 =2 W(G+ )

and the subscripts 1 and 2 refer to the vortex mumbers indicated in
sketch (m). The symbol o' represents the angle of attack in the xy'z!'
coordinate system and is the angle between the x axis and the free-
stream direction.

The values of y,',f, and G are to be determined from the spanwise
distribution of circulation I'. For the case of an equal-span triangular
cruciform wing banked 450, the I' distribution is identical on both com-
ponent wings and, as shown in equations (34) and (35), is elliptic.
Hence, the four vortex lines replacing the vortex sheets are all of equal
strength and must be placed at the corners of a square in the plane of
the trailing edge. Thus the initial values of y,' and Vo' must be
equal and the lateral position of the centroid of vortices 1 and 2 is
given by the average of their y' coordinates. That is,

Yo' = — 5 =3 Yo' (50)
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and therefore G = 2. Furthermore, since the four vortices are to be
placed at the centroids of vorticity from each of the four equal-span
panels, one can immediately write, for the elliptic circuletion distribu-
tion and 45° bank,

,-‘y-ol B .
= - ifF (51)

Now, since the impulse in the z' direction of the four vortices trailing
behind the cruciform wing must be equal to the resultant force in the =z'
direction, one can write

20 U f =

1 -
o"o'o 5P SCL (52)

so that .

r, _GL'/A _ Cr'/A _2vB o (53)
Upso £/s0 2yo'/so B A

wvhere S and A are the area and aspect ratio of one component wing.
Thus, all the necessary constants have been obtained for equation (L49)
so that, upon evaeluation of the required elliptic functions, it becomes

zal _ % [1.&675 - E @L-, q>1> ] + J Sirll e} = Q:os q>3_+.\[3“>+°“—‘1
L/1 - = sinp
n t (54)

and it is noted that @, increases positively from its initial value
Qg = ﬂ/2 at the wing trailing edge.

In reference 15 it was shown that the path of vortex 2 can be
obtained from that of vortex 1 by the use of the expression for the
relative paths

2
2 G Zil - z&: - <é Xll - '>
<Zl' - Z2'> _ g i) 5l

(55)
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so that (since @ =2) .

2 6—--6<°’1>
<%1' - z2'> _

£

2 yl) 2——-+1

£ T

(56)

Similarly, with the use of equations (50) to (53), the expression given in
reference 15 for distance behind the wing

g
L1208 | 206,90 - 2090 | +

To G(16- G2) [F(k:QO) - F(k;¢l)} +

Fole
Q0o

G sin Qscos Qg sin @,cos @

b - 6\J1-X%2sin2p, .1 -Kk2sin3p, G0
reduces to
sin @,cos @
9:“_3-‘017 -10831¥+-—-E<§:CP1>-)+F<2.~CP1> = =
£ 80 ./ sin®Q,
(58)

80 that the paths of vortices 1 and 2 are completely defined- by equa-
tions (50), (5%), (56), and (58) and the paths of vortices 3 and U are
found by symmetry. The leapfrog distance, which is defined by the con-
dition 2z;' = z,', is obtained by setting @; = x. The last term in the
bracketed expression above then vanishes and the distance d;, cen be
expressed, after evaluation of the necessary elliptic functions, as

a: 3
?L = A (1.083y) : (59)
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or

(60)

Note that this relation has exactly the form of equation (41) and is
independent of plan form.

Comparison with results of 40-vortex calculstion.- It is evident
that at very large distances behind the wing the centroids of the vortic-
ity shed from each panel must lie within the rolled-up vortex cores.
Hence, the problem of determining the positions of the rolled-up vortices
is essentially that of determining the positions of the centroids of vor-
ticity at distances greater than the rolling-up distance behind the wing.
If this is to be done by using four vortex lines leaving the trailing
edge at the centroid-of-vorticity positions, then the assumption must be
made that the positions of the four vortices as determined by equa-
tions (50), (54), (56), and (58) coincide with the positions of the cen-
troids of vorticity at all distances behind the wing. This assumption
has therefore been made in the above analysis. In order to investigate
the validity of this assumption for h5° bank, comparisons have been made
at various distances behind the wing between the vortex positions given
by the present 4-vortex analysis and the centroid-of-vorticity positions
obtained from the 4O-vortex numerical calculations of the preceding
section. The latter positions were calculated according to the relations

Sy T £z4'T4
yc' = .—..j;—i; Zc' = ee——t—— (61)
nry nry

for the vortex sheet from each wing panel, and these positions are tabu-
lated in teble IT and indicated on the plats of figure 1 by the symbol
customarily used for the center-of-gravity position. The fact that the
centroid-of-vorticity positions become indicative of the vortex-core
positions only after the vortex cores are well developed is clearly
illustrated by the centroid-of-vorticity positions of figure 1. On the
other hand, the comparison shown in figure 2 of the centroid-of-vorticity
positions for the L4- and the 4O-vortex approximations indicates that the
agreement is remarkably good for all distances behind the wing. It can
therefore be concluded that the vortex positions obtained in the present
h_vortex analysis furnish good approximations to the positions of the
vortex cores at distances behind the wing at which the rolling-up process
is essentially completed.

Determingtion of inditial slopes of vortex paths for all bank angles.-
The analytical method of the present section is restricted to an angle of
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baenk of 45° inasmuch as & solution was obtained by meking use of symmetry
considerations. For other angles of bank, it is doubtful that a closed
enalytical solution could be obtained for the paths of even the simple
Y-vortex model. It is a simple matter, however, to write analytical
expressions for the initial slopes of the 4 vortex lines at the wing
trailing edge; and it is possible to wiite corresponding expressions for
the initial slopes of the paths described by- the centroids of vorticity
of the flat vortex sheets leaving the trailing edge. In this way, one
can gain some idea of whether the L-vortex spproximation might be a good
one for other angles of bank. It will be convenient here to return to
the xyz Dbody axes lying in the planes of the wing panels. In this
coordinate system it becomes clear that the y and z components of the
slopes of the vortices from opposing panels are equal. Thus, equa-
tions-(31) through (33) reduce for the 4-vortex model to

() (@) L.l
dx d=o dx d=o0 jTz.Uoto
() (-
dx /g=0 4% /=0 12Uq (567 + to7)

(62)
&), @), a .
d=0 d=o

ItzUo(sO2 + toz)
(.‘}Z_2> 3 (E) .
dx d=o dx /a=0 anoso

vhere the subscripts 1 through 4 refer
to the vortices numbered as shown in
sketch (n), and Tog and Toy refer to

the maximum circulations of the
horizontal- and verticel-wing components,
respectively. Since the latter quan-
tities are related to the angle of
attack, and the angle of sideslip 3
according to fre

\

]

§
N
[72]
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Sketch (n)

et e At e ¢ e o e




28 NACA TN 3528

the expressions of equation (62) can be rewritten as follows:

dys (W _ 2 A
<?E'>d=o - (a?f)d:o =P <’l ¥ ﬁ—e>

ORI
e e - ﬁ2<l+%§> } (64)

@)@ - | =
d=o d=o0 Tt2(}_ + —95
to

G -&)_-<(-2) J

Determination of initiel slopes of centrolds of vorticity of the
vortex sheets for all bank angles.-~ For comparison with the above L-vortex
approximation, consider now the initial slopes of the paths described by
the centroids of the vorticity trailing from each panel of the cruciform
wing. Imasmuch as the singularities at the edges of the wake contribute
substantially to the slopes of these paths, and conditions in the imme-
diate vicinity of such singularities are difficult to investigate directly,
a control-surface type of analysis will be used. As will become evident
on reading, the analysis bears many features of resemblance to that
employed in the calculation of forces on the leading edges of thin wings.
To start, consider that portion of the trailing-vortex system contained
between two parallel planes normal to the x axis and dx apart, and
inside an arbitrary cylindrical surface C having generators parallel to

z the x axis, as illustrated in sketch (o).
§ Ly The y and z coordinates of the centroid
e of vorticity of the enclosed portion of

the vortex system are given by

Lyil'y Zzily 6
= ; Zo = —————— 5
e nry ’ ¢ ZTy (65)

where y4; and z; are the coordinates of
a vortex having strength I'j, and the
summations are extended over all vortices

Sketch (o)
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extending through the plenar ends of the control surface. Since the
slopes of each vortex filament are given, according to equations (31)
through (33), by

dyy Viut Vi, W dzy iy tVi; Wy (66)
& 2w, U, & o, U
the slopes of the path of the centroid of vorticity are
dye EviPy ~ dz,  IWTy 6
dx  ULET3’ dx  U,ETi (67)

Now, an important consequence of the fact that the flow in the vicinity
of the wake is governed by Laplace's equation, that is, by equation (5),
is that the velocities at any station are the same whether the vortices
at that station are free or fixed. This means that

Virree = Vifixeq ~ 1’ Vifree = Yipixea = "1 (68)

In contrast to the force-free state of the actual trailing-vortex systemn,
the fixed-vortex system sustains forces given by

A¥3 = -pg#ilidx ;  dly = pvylyax (69)

on each vortex filament, or

dY = Td¥y = -p EWiTydx
- (70)
aL = ZdLi = poZ‘.viI'id.x
in total. Combining equations (67) and (70) yields the following
relations:
dy, ar az, ay (1)
a&x  pU,Elidx = 4x poUo BT dx ™
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Hence, the slopes of the lines connecting the centroid-df-vorticity posi-
tions of the free-vortex system can be determined from the forces on the
fixed-vortex system.

The total forces dY and dl. on the fixed system can be determined
by applying momentum methods to the control surface shown in sketch (o).
This calculation is simplified by the fact that the pressures and flow of
momentum through the plane faces exactly counterbalance, leaving only the
contributions from the contour C. Thus

%:-fpdz-pofv(vdz-wdy)
C C
| (12)
aL _
Ex-_bgpdy+polw(wdy-vdz)

vhere the integrals are to be taken in the counterclockwise sense and the
pressure p 1is related to the velocity components according to equa-
tions (10), (31), and (32), that is

p
D =D, - p U (P + o, - BYy) - ?f’(myz + %) (
73)

Po w2/ o 2 Po
P, - P Uy + 5 Uy (2 + 8%) - 2(v2 + w2)

o 2

Now, p,, o, and B are constants and contribute nothing to the integral
of equation (72) vhen integrated around the contour, and ¢, 1s zero
because the vortices are fixed. Hence, equation (72) can be rewritten
as follovs:

o 5% l [ - v2)dz + 2vw ay]
(74)
%= Po [ [(w3 - v3)dy - 2vw dz]

Finally, on substitution of equation (74) into equation (71l), we have
the following relations between the slopes of the path of the centroid
of vorticity and the velocity components v and w which exist at the
location of the cylindrical control surface C.



NACA TN 3528 , 31

N
. 1 f[ (-v2 + w?) ]
dX—UOZI‘i vwdz+———-—-—2 dy
> (75)
& Uonr; vw dy + 5 dz]
/
vhere
sry = - [ (v oy + waz) (76)

C

The above results will now be applied to the calculation of the
initial slopes of the path of the centroid of the vorticity trailing from
the wing panel which extends along the positive y axis. In keeping
with the notation of sketch (n), this panel will be designated with the
number 2. If the control surface C is selected as shown in sketch (p),
the integrals of equations (75) and (76) can be divided into three parts.

- . 4

£

e e~

D G
e

4
Sketch (p) Sketch (q)

The contributions of part & can be written directly, and that of part b
can be evaluated by considering the asymptotic form of the velocities in
the vicinity of the edge of the wake to be the same as that of the veloci-
ties around the edge of a flat plate; that is,

- - X sin Y, =t cos ¥ .
v = - sin 55 V=75 cos . (77)

NG >

vhere p and W are polar coordinates, with origin at the edge of the wake
as indicated in sketch (q), and B is a constant.’ The contribution of
part ¢ is zero because dy is zero, dz &pproaches’ zero, and the
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velocities are nonsingular there.
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Upon cerrying out the necessary opera-

tions, the slopes of the path of the centroid of vorticity immediately

behind the wing are

(=)
dx d=o

=)
dx d=o0

The velocity camponents

I

(78)

S0
I f v I gy
Uolog o dy
=To) f
1 J[‘ -W %5 dy + uen
Uolog o J
v and w can in turn be expressed in terms of

the circulation distribution at the trailing edge by employing equa-

tions (31) and (32).

The circulation distributions on both the horizontal-

and vertical-wing components are elliptic, according to equations (34)

and (35)-

Hence,

r

CH

gase 5 Loy = 2Wobto

It also follows from equations (76) and (77) that

and therefore

<éycé)
dx d=o

=i

152 1
_B’l+§§ E< -1 —=
o
Jﬂ;+ 802

b= Uya 5

t02/502
+ 2
1+ =2
802

K| sin~%

(79)

(80)

(81)

For cruciform wings having horizontel and vertical components of equal
span, that is, sy = ty, the relations of equation (81) reduce to

dy'c d-zc
<d'x2>d=o =-0.5998 ; <dx2> - = 0.785a

(82)
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These results also apply to the initial slopes of the path of the centroid
of the vorticity trailing from panel 3. The corresponding expressions for
penel 1, and likewise panel 4, can be found by the proper interchange of
quantities and are ’

dycl , dzcl
<dx >d=o =-0.7858 ; (dx> = 0.599a (83)

=0

These results may be compared with the corresponding values for the
initial slopes of the vortex lines of the UY-vortex approximation to the
wake of an equal-spen cruciform wing by substituting 8¢ = to 1into the
relations of equation (64).

dy . dz — 0.5¢
<‘ax‘l‘> = -0.7978 ; <El> = 0.595a (8k)
d=o0o d=o
dy%) o <ézé>
2 =-0.5958 ; = 0.797a (85)
dx d=0 _d? d=o

It can be seen by comparing the results of the immediately preceding equa-
tions that the initial slopes of the individual vortex lines of the
4_vortex model are very nearly the same as the initial slopes of the paths
of the centroids of vorticity of the corresponding portions of the con-
tinuous vortex sheet. This conclusion serves as a first indication that
the 4-vortex model may be as satisfactory for determining the positions

of the rolled-up vortex cores at great distances from the wing for all
angles of bank as was demonstrated for 45° bank in figures 1 and 2.

WATER-TANK EXPERTMENTS

Experiments were conducted in a water tank for the purpose of observ-
ing visually the vortex paths calculated in the foregoing anslysis. Photo-
graphs were obtained of the wake at various distances behind a cruciform
wing by plunging a model vertically into the water at uniform speed and
photographing the water surface from above with a moving-picture camera.
The traces of the wake were made visible by applying fine aluminum powder
to the wing trailing edges. The models tested were triangular flat-plate
wings of aspect ratio 2.
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Abridged series of photographs are presented for angles of bank of 0°
(plane wing) end 45° in figures 3 and 4, respectively. The latter results
are shown for distances up to the leapfrog distance dj, behind the wing,
and measurements of this distance were obtained by means of a tape vhich
moved with the model and recorded on the film the distance between the
wing trailing edge and the water surface. The results of such observa-
tions at various angles of attack are presented in sketch (r) and compared
with the k-vortex calculation of equation (60). The agreement is seen to
be quite satisfactory except possibly at the very high 1ift coefficients.

The lift coefficients for the experi-
//// mental points were calculated from

12

— 4-Vortex Calculation equation (L18).
10 (Eq.(60) 7

© Experiment (Water tcnk)/

Because of the persistence of the
vortex sheets connecting the vortex
8 /// cores (see figs. 1 and 3), the k-vortex
o approximation may not yield accurate
/// vortex paths at distances behind the
6 /// wing greater than sbout dj, since the
(o}

ofe

sheets may upset the periodic nature of

a A the predicted paths. The Y-vortex

//// approximation likewise cannot be expected
°

to give the vortex core positions accu-
2 rately at distances behind the wing at
3 which the vortex sheets are only par-
tially rolled up since there the posi-
5 tions of the centroids of vorticity do
A not correspond to the vortex cores, as
discussed previously in connection with

Sketch (r) figure 1.

LIFT ON A TATI, I A NONUNIFORM DOWNWASH FIELD

Once the vortex positions at the tall station are known through
calculations similar to those described in the preceding sections, or by
other means, the associated downwash and sidewash fields and the 1ift
and side force on the tail can be determined by direct calculation. The
determination of the lateral velocities can be accomplished by substitut-
ing the known strengths and positions of the vortices into equations (31)
and (32) and integrating (or summing in the case of a discrete vortex
approximation). This problem is exactly the same as the classical prob-
lem of determining the incompressible flow field associated with a dis-
tribution of rectilinear vortices, and several alternative methods are
available for obtaining the solution.

The determination of the lift and side force on a tail in a non-
uniform downwash field of known structure is the remaining task necessary
to complete the calculation of such quantities as the 1lift and center of
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pressure of a wing-tall system. Although the solution of this problem is
often approximated by the introduction of additional assumptions such as
strip theory, etc., the exact linear-theory solution can be obtained by
use of reciprocel theorems. This has already been demonstrated in refer-
ence 16 and elsewhere for the case where the teil is a planar surface of
sufficiently high aspect ratio that the linear pressure-velocity relation
can be used. .The following discussion will be concerned with the deriva-
tion of the corresponding relsationship that is consistent with the formula-
tion of slender-body theory summasrized in the first section of the present
anelysis for the 1lift of a low-aspect-ratio cruciform wing having flat-
plate wing panels. This aim will be accomplished by considering certain
properties associated with a second cruciform wing identical to the first,
but immersed in a uniform flow field streaming in the opposite direction
to that ebout the first wing, as illustrated in sketch (s). Inasmuch as

zZ,

W
g

Sketch (s)

wing 1 is immersed in a nonuniform f%gw field, the local. or effective
angles of attack and sideslip & and B are variable, that is

(95)
U (x,y) = [‘;—i =0 + UZ =
o : o) (86)
~ v Py
Bl(x:z) == ﬁ = By- To 1

where o, and B; represent the geometric angles of attack and sideslip,
and (qv)l and (cpz)l represent the additional lateral velocity components
induced, say, by the vortex system trailing from a wing somevhere upstrean.
In order to express the 1ift on wing 1 in terms of simple properties of

the flow about wing 2, it is necessary that wing 2 be at zero sideslip,
thus

Ba = 0 | (87)
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The proper reciprocal relation for use with multiplansr systems is given
in reference 16 and is

[ [tz = [ [aa(va),as (88)
Z z

where the area of the integration I extends over both sides of all wing
surfaces, V, 1is the component of the perturbation velocity normal to and
directed awey from the surface, and the subscripts 1 and 2 refer to condi-
tions on wings 1 and 2. Since, for wings having no thickness, V, is
equal and opposite on the two sides of ites surface, and is furthermore
proportional to & on wing component H and to B on wing component V,
equation (88) can be rewritten as follows:

ff Au,Tpdx dy +ffAul'é'zdx dz =ffAu2&ldx dy +ffAu2'§ldx dz (89)
H v H A

Here Au refers to the difference in u on the two sides of any surface
and the subscripts H and V indicate that the integrals are to be carried
over wings H and V, respectively. In the present case, simplification
occurs not only because ag = const., and 62 = 0, but also because it
follows therefrom that Au, = O on wing V. Thus equation (89) reduces to

[ f f Awds = f f Avgd,; a3 (90)
H H

Now if the integral on the left side of equation (90) is rewritten in
terms of @ and integrated with respect to x, that is,

ffAulds =ffA %i—l ax dy =f+so(Acpl)Edy (91)
H H

...SO

where the subscript TE refers to the values of AQ@,; at the trailing
edge; and if equation (26) is recalled for the lift including the effects
of the nonlinear terms in the pressure-velocity relation of equation (10),

+8¢p

L = pyU, f PR dy (26)
_so
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equation (90) becomes

/ Ly = pUp 4](%) dydx dy (92)

In many problems o, varies only slowly with x. If it is assumed
that &; is actually independent of x, equation (92) can be simplified
in the following manner:

+80 = +80
L, = poUof &ldyf % dx = poUof &1 % dy (93)
—SO II:E _SO IJIE

Inasmich as wing 2 in reverse flow is composed of flat-plate elements and
is at zero sideslip, the circulation distribution at the trailing edge
AAq&E is proportional to the span loading 1 and equation (93) can be

revritten as

ol
Ly =f Q5 g‘i dy (o4)

It is interesting to observe that this expression is identical in form
with that obtained in reference 16 for planar systems of sufficiently
high aspect ratio that the linear pressure-velocity relation can be used.
It is important to remember, however, that the present application
requires the wing in reverse flow to be at zero sideslip, whereas the
analysis of reference 16 requires the wing in reverse flow to be at the
same angle of sideslip as the wing in forward flow.

It is evident that equation (94) can be applied in several different
ways. One can caompute the total T, induced by the vortices at the tail
station, muitiply by 12/&é, and integrate by either analytical, numeri-
cal, or graphical mesns; or one can determine a general formula for the
1lift due to a single vortex and superpose the lift contributions of all
the vortices. The latter method is of particular utility where the 1o
distribution is of a common form, such as elliptic. This case, which
includes all low-aspect-ratio flat-plate wings having plan forms such
that no part of the trailing edge lies forward of the station of maximum
span, has already been treated in reference 16 but will be included here
for the sake of completeness. Thus, consider the problem of determining
the 1ift on a low-aspect-ratio cruciform wing at zero geometric angle of
attack resulting from the presence of an infinite line vortex of strength
I' pessing through the point y =1 and 2z = and extending parallel
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to the x axis a8 shown in sketch (t). The wing panels will be con-

sidered to have such plan forms that the span loading is elliptic when
the wing is in flight in the reverse

direction at zero sideslip. Thus,
equation (34) yields for the wing in
reverse flow

.72.=EO_?9.A&.=2‘)U2 52_y2
o oe oo o 1

(95)

The effective angle of attack of the
wing in forward flow is

. (ch)l _ T Y1 -1
Sketeh (t) = A T TN
(96)

Substitution of equations (95) and (96) into equation (93) or (94) yields
the following formula for the lift:

n / hn7t® t2 o
fa == Tedloto | - 3 [T/ 3 (o) + (i)

(97)

The 1ift on a wing in the vicinity of a number of such vortices can be
found by superposition. The result so calculated applies to the wing
when the geometric angle of attack a; is zero. If a; 1is not zero,
an additional contribution must be included which is just the 1lift on
the wing in the absence of all adjacent vortices. For the present class
of plan forms, this contribution AlL; can be calculated by direct appli-
cation of equation (22), that is,

ALy = np U 8050 (98)

The above result may be contrasted with that of strip theory in which
each section of the wing is assumed to act as though it were in two-
dimensional flow at an angle of attack ;. The latter assumption results
in a relation for 1lift of a wing in a nonuniform flow field which resembles
equation (S4); except that the spen loading 1,/d, is replaced with a
function proportional to the local chord. Inasmuch as 1z 1s not propor-
tional, in general, to the local chord, it is evident that the use of strip
theory will usually result in error.
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CONCLUDING REMARKS

Several facets of the aerodynamics of slender cruciform-wing and
tail interference problems.have been investigated in the foregoing dis-
cussions. Formulas are given for the computation of the loading and
integrated forces on cruciform wings and for the determination of the
1lift on a tail in an arbitrary, but known, downwash field. The Principal
difficulty in wing-tail interference problems resides in the determina-
tion of the flow field at the tail station and stems from the fact that
the trailing vortex sheet rolls up and deforms very rapidly behind low-
aspect-ratio wings. One can always compute the behavior of the vortex
system within the framework of inviscid theory, but the labor is great
vhen a sufficient number of vortices is used to give adequate repre-
sentation of the actual vortex sheets. In the present study, results
are given of a calculation using 40 vortices, but even this number proves
insufficient to study the nature of the vortex spirals at large distances
behind the wing. On the other hand, the calculations show that at suf-
ficient distances from the wing most of the vorticity from each wing panel
is concentrated within a single restricted region, and these results bear
out the assumption often made that the vortex system can be represented
by a much simpler model having only four vortices. If each vortex is
assigned a strength equal to the total circulation around the associated
wing panel, and is located, at the trailing edge, at the lateral position
of the centroid of the vorticity it represents, it is shown that the
lateral positions of the four vortices change with distance in such a
manner that they are in close accord with the positions of the centroids
of vorticity of the actual vortex system at all distances from the wing.
Consequently, the lateral position of each of the four vortices is in
reasonably good agreement with the lateral position of the corresponding
vortex core at large distances from the wing, in spite of the fact that
the U-vortex model is clearly inadequate: for representing the details of
the flow at small distances from the wing.

Several aspects of the analysis of the behavior of vortex wakes
remain to be investigated in future studies. In the first place, both
the numerical study of the LO-vortex model and the analytical study of
the 4-vortex model are confined to the case of h5o bank. Although the
numerical method can be used for other bank angles and, of course, for
simpler models, it does not appear possible to extend the present analyti-
cal method to other bank angles. The numerical method is slow and cum-
bersome, however, and there is need for other more rapid ways for calcu-
lating the form of the vortex system at the tail station. Also needed
is a method for estimating the form of the vortex system in the interme-
diate stages of rolling up. In this range, only a part of the vorticity
cen logically be assumed rolled up into the vortex cores, the remainder
being in the relatively undeformed sheet. A related problem exists even
at great distances behind the wing where nearly all of the vorticity is
concentrated in the vortex cores. Replacement of the vortex cores having
finite lateral extent with line vortices of zero diameter leads to very
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large errors in the induced velocities at points in the immediate vicinity
of the vortices. TInasmuch as the energy method used for planar wings and
described in reference 1 cannot be applied directly to cases involving
banked cruciform wings, there exists a need for a method for estimating
the size and velocity distribution of the vortex cores so that a correc-
tion can be applied to the L-vortex results. This need is diminished
somevhat by the fact that, in many cases, the forces on the tail are not
affected by the finite size of the vortex cores. This situation prevails
whenever the vortex cores do not touch the tail surfaces.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Oct. 25, 1955
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APPENDIX A

FORCES ON SLENDER PLANE- AND CRUCIFORM-

WING AND BODY COMBINATIONS

Formulas are presented in the text of this report for the pressures
and integrated forces on slender cruciform wings. These results are
obtained following the procedures of reference 10, but differ in that
the effects of nonlinear terms in the pressure-velocity relation are now
properly accounted for. Inasmuch as the inclusion of these terms also
alters the pressures on cruciform-wing-body combinations, and the cor-
rected formulas have not been given elsewhere, they will be given briefly
in this appendix.

The precise problem to be discussed is that of determining the load
distribution and aerodynamic properties of slender cruciform-wing and
body combinations inclined at small angles of pitch, a, and yaw, B. The
wing-body combination is considered to consist of a slender body of revo-
lution and flat, pointed, low-aspect-ratio wings extending along the
continuation of the horizontal and vertical meridian planes of the body
as shown in sketch (a). The component wings are designated wing H and
wing V, as in the case of the wing alone discussed in the text. The
plan form of wing H is given by y = #s(x) and that of wing V by
2z = #t(x). The radius of the body is, in general, a function of x and
is designated by r =~y2 + z2 = a(x). The analysis is confined further
to wing-body combinations having wings whose edges are leading edges
everywhere upstream from the base section. To extend the solutions to
other configurations, further consideration must be given to the influence
of the vortex wake extending downstream from the trailing edge of the
wing. A brief discussion of this problem can be found in reference 17.

As described in the text, the perturbation velocity potential @
is related to the total velocity potential according to equation (1),
and satisfies the Prandtl-Glauert equation given in equation (2). The
general solution for slender bodies of arbitrary cross section is given
in equations (3) through (6). For the present cruciform-wing and body
combination, the solution must satisfy the boundary conditions given by
equation (13) on the surface of the body of revolution and by equa-
tions (14) and (15) on the horizontal and vertical wings. Inasmuch as
attention is confined to wings of zero thickness, the boundary conditions
on the wing simplify somewhat because h 1is zero. Once @ is determined
in this way, the pressure can be calculated directly by using the rela-
tionship given in equation (10).
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Following equation (T), ﬁhe solution for ¢ in the vicinity of the
wing-~-body combination can be written as

? =9, + g(x) (A1)

vhere @, represents the solution of the two-dimensional Laplace equa-
tion for the specified boundary conditions and g(x) is a function of x
alone defined by equations (3) and (%), or explicitly by equations (8)
and (9). The function @, 1s independent of Mach number, all of the
influence being confined to the function g(x). As in the case of the
wing alone, @, can be divided into components each representing @,

for a simpler problem. These components are illustrated schematically
in sketch (Al). Component ¢, represents the potential for two-

z 4 4 4

P | C')
C‘ED—(}y = C%—()—{—S—y + (} y + \sﬂ& -y
\ hd 7T
O O
? = Pq + Po + P

Sketch (Al)
dimensional incompressible flow about the wing-body cross section under-

going uniform translation in the direction of the negative =z axis,
and is

Upa at a4 at \2
= - = 2 —_— 4 -
Py, = % N [ (l + r4>r2cos 20 + s QL + S4>]+ [r <l 3 +

ot 2 ot 4 1/a2y1/2
4, 2 4
he*cos<20 + s <l+ ;) - 252<l+ r—4> <;|_+ ;—) r2cos 26} } - Uyoz

(a2)

where the sign is positive in the upper half-plane 0 < 6 < x and nega-
tive in the lower half-plane = < 8 < 2x. The expression for @, is

2
P =:!:3—°?—B{[<l+%z>r2cos 20 +t2<l'+i—z>:l+[r4<l-i—: +
1/2

‘4 2 4 4 1/2
ha*cos®26 + t* <1+ %;) + 2t2<1 + %;) <1+ §—4> r2cos 26] } + Up By

(A3)
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where the sign is positive in the left half-plshe n/2 <e< 3ﬂ/2 and
negative in the right half-plane (— ﬂ/2 <6< ﬂ/E). Component @,
represents the potential for two-dimensionsal incompressible flow asso-
ciated with a source situated at the origin and is

Up dSe
Pe = gj&"l r (Ak)

vhere r =~y2 + z2. The perturbation velocity potential for the flow
field about a cruciform-wing-body combination inclined in both pitch and
yaw is

P =9y + Py + P + g(x) (A5)

Through application of the above equations to the pressure-velocity
relationship of equation (10), the following expressions are found for
the lifting differential pressures (lower minus upper) on the horizontal
wing and body

<A§L>H_=%{[%<l-.—>] %%[ <—" > (l' z>2}}+

(a6
TaEsEencn
) B 22 e B
' JG=F
et () (2 - &) )
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Similarly, the lateral differential pressure (port minus starboard) on
the vertical wing and body are given by

oy PfEC-8) 22(E-) -9}
Ja5)-56-3)

w3 (-39

(A8)
4 2 4 2 4 4
Je9)-26-9/86-9- -8
I a4 a da (82 2 22
A —del—t4+2¥‘d—x— 't_2+l- a2
<—PE = +
q 2
B a2 Z2
/(“zE) "M
z 2=
dhop £ (1 - Z)
(49)

8.2 22 s2 22
(RN IR

The total 1ift and side force exerted on a complete cruciform-wing
and body combination can be determined by integrating the loading over
the entire surface area. It is often convenient to carry out the inte-
gration by first evaluating the 1lift and side force on one spanvise strip
and then integrating these elemental forces over the length of the wing-
body combination, thus

a (L 50 apy d 2 g4
d—x‘<‘q>=f T@V:anr,-d;[sz< -z'—2+2—4- ] (A10)
—so )
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+tg

JAN 2
a (Y _ Py al,.» a2 gt
"ax<i>"f qdz"'E“de.[t trE ] (1)

“to t4
and
! 2 4
L d (L _ a2 4 a a
-/ a(@)“‘g““{[52<l"?+§z ] [(l——>]}
6] 1 o)
(A12)
1 . .
[ e @ {6 9] 6519
q dx 2 4 y 2 4
o o
(813)

where the subscripts o and 1 in the integrated results refer to the
values of the bracketed quantities at x = 0 and x = 1, respectively.
If the wing-body combination is pointed at the nose, the bracketed quan-

tities vanish at x = O, and the expressions for 1ift and side force
reduce to

L a2  a*%
-a = 2na [82 ( - 5—2 + S—4'>:| (Al)-l-)

1

Y a2 a4
2= 2o [+ ( - rr)L (123)

The above expressions for the loadings and forces indicate that
there is a complete correspondence of the expressions for 1lift and side
force, and that the 1ift is independent of the angle of yaw and the side
force is independent of the angle of attack. Inasmuch as the pitching
and yawing moments M and N about an arbitrary moment center X, are
obtained by performing the following integrations
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[0 E@e  we

b [ o & (D) o
)

it is evident that the above statements have corresponding counterparts
for these moments. Although the details of the calculation will not be
given here, it can be shown further for cruciform-wing-body combinations
having identical horizontal- and vertical-wing panels that the resultant
lateral force ~NLZ + Y2 is independent of the angle of bank, and that
the total rolling moment is zero for all angles of bank.

Equations (A14) and (Al5) show that the lift and side force on a
slender pointed wing-body combination depend on the geometry of only the
base section and not of the plen form. This result is in conformity with
the more general integral relation of equation (26) obtained using momen-
tum methods, but not with the result obtained in reference 10 using the
linear pressure-velocity relation. The latter analysis (here being super-
seded) indicates that equation (All) is the proper expression for the
1ift of a wing-body combination consisting of a low-aspect-ratio trian-
gular wing mounted on a slender pointed body that is cylindrical along
the wing root, but not, for instance, for a conical wing-body combination.
The conical configuration is of particular interest because of the exist-
ence of a supersonic conical-flow solution (ref. 18), and because it has
recently been suggested (e.g., ref. 19) that that result be used to check
the applicsbility of approximate solutions. Comparison reveals, however,
thet the results of reference 18 do not agree with equation (Alk), but
check the slender-body results of reference 10. The explanation is that
the linear pressure-velocity relation is used in the supersonic conical-
flow solution, and that the latter results agree with those given here if
the effects of the additional terms in the pressure-velocity relation are
included in the analysis.
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TABLE I.- CALCULATED LATERAL POSITIONS OF 40 VORTICES AT VARIOUS

CRUCIFORM WING AT 45° BANK

DISTANCES BEHIND A SLENLDER
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CALCULATED LATERAL POSITIONS OF 40 VORTICES AT VARICOUS DISTANCES BEHIND A SLRITTER

CRUCTFORM WING AT 45° BANK - Concluded
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NACA TN 3528 -

TABLE IT.- CALCULATED LATERAL, POSITIONS OF CEWTROIDS OF VORTICITY OF
L0 VORTICES BEHIND A SLENDER CRUCIFORM WING AT 45° BANK

a crt Vortex numbers a i,l Vortex mmbers
%0V £ = T 10 | 1L %o 20 4002 § - T 5 10 | 2T %0 50
0| ye' | o.5554 0.555% 170 | ye' | 0.5191 0.5916
zz' 0.5554 -0.555M ze! 0.8180 -0.287k
1| ¥e' | 0.5551 0.5556 190 | v.! 0.51k7 0.5960
ze' | 0.5569 [ -0.5537 z,! 0.8484 | -0.2553
3| ¥! 0.554%7 0.5560 210 | y,? 0.5104 0.6003
Ze' | 0.5600 | -0.5506 zg! 0.8781 | -0.223%0
5| ye! 0.5543 0.556k 230 | ¥ef 0.5060 0.6047
zﬁ- 0.5631 -0.5475 zgt 0.9088 -0.1905
71 ye* | 0.5539 0.5568 250 | ¥¢! 0.5016 0.6091
22' 0.5662 -0.54kY z,! 0.9387 | -0.1578
M ye' | 0.5530 0.5577 . 270 | ye! 0.4971 0.6136
zg! | 0.5724 | -0.5382 Z¢! 0.9685 | -0.1248
15 | ¥.! 0.5522 0.5585 290 | ye! 0.kg27 0.6180
zc' 0.5787 -0.5319 Ze' 0.9981 -0.0917
21 Ye! 0.5509 0.5598 310 | ¥e! 0.4882 0.6225
zo' 0.5880 -0.5226 Zo! 1.0275 -0.0584
27 | ye! 0.5496 0.5611 330 | Ye! 0.4836 0.6270
Ze?! 0.5973 -0.5132 Zo! 1.0566 -0.0249
33 | yo' | 0.5483 0.562k 350 | ¥e! 0.4791 0.6316
zz' 0.6067 -0.5039 Ze! 1.0856 0.0088
3 Ye! 0.5471 0.5636 370 | Yot 0.47hs5 0.6362
7| Sl | oishs ot | 1.4k | o.cke8
b ve' | o.545k . 390 | vc! 0.4700 0.6407
T zz' o.gagh -8.15;32_»(3) ZE' 1.1430 0.07T?
55 | ve' | 0.5437 0.5670 ho| ! 0.4654 0.6453
2zt 0.6408 -0.4695 2t 11714 0.1115
63 | Yo' | 0.54%20 0.5687 430 | yo! 0.4608 0.6499
zg' 0.6532 -0.4570 zz' 1.1995 0.1461
T Ye! 0.5403 0.570% 4so | yor 0.hs562 0.6545
zz' 0.6657 - ,ﬂl@ zg' 1.227h 0.1810
79 Ye! 0.5386 0.5721 bo | o' 0.h516 0.6591
Z.' | 0.6781 -0.1317 Z, ' 1.2550 0.2160
87 | ve' | 0.5369 0.5738 kgo | ye! 0.1470 0.6637
ze! 0.6905 -0.h192 Ze?! 1.2824 0.2513
95 Ye! 0.5352 0.5756 510 | ve! o.4hi2h 0.6683
ze' | 0.7029 | -0.4066 ze! 1.3097 0.2869
110 | ve! 0.5320 0.5788 530 | ye! 0.4378 0.6729
z.! [ 0.7260 | -0.3830 Ze! 1.3366 0.3226
130 | ¥o' | 0.5277 0.5830 550 | ve! 0.43%32 0.6775
zo' | 0.7568 | -0.3512 zo! | 1.3635 | 0.3565
150 | vye! 0.5234 0.5873 570 | ¥e! 0.4286- 0.6821
zz' 0.7875 -0.319% 2ze! 1.3898 0.3945
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Figure 1.- Calculated weke shape at various distances behind an equal-
0
spen cruciform wing; @ =h5.
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Figure 1l.- Continued.
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Figure 2.- Comparison of positions of centroids of vorticity caleculated
with 4 and with 40 discrete vortices.
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a/o = 0.09 /b = 0.35

a/b = 0.60 a/b = 0.89

afo = 1.45 ‘ d/b = 1.80 A-l4n47

Figure 3.- Photographs of the weke at various distances behind a trian-
gular plane wing (or cruciform wing at ¢=O) of aspect ratio 2; a =20°.
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a/b = 0.61 d/b = 1.79  A-1es87

Figure U4.- Photographs of the wake at various distances behind an equal-
span trianguler cruciform wing of aspect ratio 2; ¢ = 45°, o' = 17°.
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Figure 4.- Concluded.
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